Fill Na

The fillna operation allows you to replace missing or NaN values in your dataset with a specified value or method (such as forward-fill or backward-fill). This can be helpful when you need to clean up your data before performing further analysis.

Here's a brief explanation and examples of different methods to fill missing values using the Fill Na function:
Function
- Replace: Replace missing values with a specific value.
- Backfill: Replace missing values using the next valid value in the column or row.
- Forwardfill: Replace missing values using the previous valid value in the column or row.
- Interpolate: Replace missing values using linear interpolation based on existing values.
- Most frequent: Replace missing values with the most frequent value in the column.
- Mean: Replace missing values with the mean value of the column.
- Median: Replace missing values with the median value of the column.
- Max: Replace missing values with the maximum value of the column.
- Min: Replace missing values with the minimum value of the column.
Example
Dataset:
A | B |
---|---|
1 | NaN |
2 | 4 |
3 | NaN |
Fill NaN values with 0:
A | B |
---|---|
1 | 0 |
2 | 4 |
3 | 0 |
Updated 5 months ago